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della Materia—Unità di Modena, Via Campi 213/A, 41100 Modena, Italy

Received 14 March 2002
Published 31 May 2002
Online at stacks.iop.org/JPhysCM/14/5881

Abstract
In this paper we review the recent advances of the He atom scattering
experiments and the theoretical interpretation of the time-of-flight (TOF)
spectra relative to clean flat metal surfaces in the one-phonon regime. We
discuss the atom–surface scattering mechanism, including the anomalies in the
metal surface phonon spectrum and the details of the atom–surface interaction
potential. In particular we focus the discussion on the anticorrugating effects
in the TOF intensities.

1. Introduction

Atom surface scattering experiments started around 1930 with the experiments performed by
Stern [1]. In the same period atom surface scattering theory was developed by Jackson and
Mott [2]. However the real breakthrough took place only in the 1960s with the development of
high-vacuum systems and of the supersonic beam technique, which provide intense and almost
monochromatic He atom beams (HAS technique) [3,4]. From the theoretical side the advances
were made possible by the development of fast computers to solve the quantum mechanical
problem for realistic models. In the book Dynamics of Gas Surface Interaction [5], many
experimental and theoretical aspects of the problem are discussed. Earlier reviews covering part
of this subject are those of Goodmann and Wachmann [6], Engel and Rieder [7], Toennies [8],
Celli [9], Barker and Auerbach [10], Bortolani and Levi [11] and Gumhalter [12].

The first evidence of the dispersion relation for the Rayleigh surface phonons along the
whole surface Brillouin zone was achieved [13, 14] by using the HAS technique for LiF. This
method has been applied to the study of other alkali halides [15, 16], semiconductors [17–20]
and metals [21–31].

The HAS spectroscopy gives phonon dispersion curves on surfaces with accuracy
comparable to that realized in the neutron inelastic scattering studies of bulk crystals. The
inelastic He scattering method offers impressively high resolution in the range of 0.1 meV.
This allows the study of the systematics of surface phonons, including the linewidth. Helium
atoms are believed, to an excellent approximation, to sample only the motion of atoms in the
outermost atomic layer.
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The atom scattering is better in the determination of modes having energy below 20–
30 meV: the region of energy of the surface phonons for many metals. If the energy exchanged
by the He atom with the surface exceeds this limit, multi-phonon processes take place, washing
away the details of the surface lattice dynamics.

In this review we focus on the theoretical interpretation of time-of-flight (TOF)
experiments from clean and unreconstructed metal surfaces. The paper is organized as follows.

In section 2 we introduce useful notations and the kinematics of the He atom surface
scattering, by focusing on the importance of in-plane scattering.

In the subsequent section 3 we discuss at some length the theory of the He atom
scattering in the framework of the two potentials of Gell-Man and Goldberger [32]. We
show the convenience of choosing the ‘large potential’ as the laterally averaged atom–surface
potential, which gives rise to specular reflection only. With this choice to lowest order in the
scattering matrix T we derive a formula for the reflection coefficient in the distorted Born
approximation (DWBA) [33].

The derivation of the He–surface potential is discussed in the subsequent section 4.
Because even in the present day a detailed calculation of the He–surface potential cannot
be performed with the same accuracy for all the distances of the He atom from the surface, we
split this interaction into a repulsive interaction valid at small distances of the He atom from
the surface and an attractive part dominated by van der Waals forces at large distances of the
He atom from the surface. We also discuss the smoothing of the van der Waals interaction in
the region of close approach of the He atom to the surface (3–4 Å), which is of crucial interest.
At the end of the section we introduce the effects of the anticorrugation of the atom–surface
potential in the evaluation of the differential reflection coefficient.

The problem of the determination of surface phonons is presented in section 5, where
we present the phenomenological models and the recent models obtained at least for simple
metals in a fully microscopic self-consistent approach.

Finally section 6 is devoted to the comparison of the theoretical calculations with the
experiments for simple, noble and transition metal surfaces.

2. Atom–surface interaction kinematics

In order to analyse the experimental data of TOF spectra obtained with a molecular beam
apparatus we shall first discuss the kinematical theory of the scattering.

The crystal lies in the z < 0 region, where z is the axis normal to the mean plane of the
surface. εi is the energy of the He atom impinging on the surface in the direction defined by
the polar and azimuthal angles θi and ϕi , and εf is the energy of the atom reflected in the
direction defined by the polar and azimuthal angles θf and ϕf . The scattering geometry is
drawn in figure 1. The incident He atom wavevector is denoted by �ki = ( �Ki, kiz), where �Ki

is the wavevector component parallel to the surface and kiz is the component perpendicular to
the surface, while for the scattered He atom the wavevector is �kf = ( �Kf , kf z). Because the
incident and reflected He atoms are free particles the incident and scattered energies are

εi = h̄2k2
i

2m
εf = h̄2k2

f

2m
(1)

where m is the He atom mass. In the one-phonon regime with in-plane scattering conditions
the initial momentum of the He atom parallel to the surface �Ki and the final momentum �Kf

must fulfill the lateral momentum conservation law

�Kf − �Ki = �Q + �G (2)
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Figure 1. He surface scattering geometry. Q is the wavevector of a surface phonon.

where �Q is the momentum of the phonon and �G is a vector of the reciprocal lattice of the
surface, while the energy of the He beam must fulfill the energy conservation law

εf − εi = ±h̄ω( �Q) (3)

where ω( �Q) is the frequency of the phonon. The sign + refers to the annihilation events, while
the sign − refers to creation events.

The simultaneous conservation of energy and momentum gives

h̄ω( �Q) = ± h̄2{K2
i [1 − (sin2 θf )/(sin2 θi)] + 2 �Ki · ( �Q + �G) + | �Q + �G|2}

2m sin2 θf

. (4)

The rhs of equation (4) is usually called the ‘scan curve’ of the experiment. As one can see from
equation (4), in inelastic one-phonon scattering events only those phonon modes corresponding
to the intersections between the scan curve and the phonon dispersion relation are observed.

3. Inelastic scattering theory

Since we are interested in low-energy atom–surface scattering in which the incoming particles
do not penetrate into the surface, following the two-potential formalism of Gell-Mann and
Goldberger [32] the total interaction potential Vi is divided into a large part U exhibiting
total specular reflection and diffraction and a remainder v = Vi − U , which must be treated
approximately. The potential U is the laterally average (hereafter defined) of the total potential
with the assumption that all the ions of the crystal are in their equilibrium positions.

The interaction potential Vi can be written as a sum of pairwise atomic potentials

Vi =
∑
l,κ

va(�r − �rlκ − �ulκ) (5)

where �r is the position of the He atom, �rlκ = ( �Rl + �Rκ, zκ) is the equilibrium position of
crystal atoms and �ulκ is their displacement from equilibrium positions. The laterally averaged
potential can be written as
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U(z) = 1

NAc

∫
surf ace

d2 �R
∑
l,κ

va( �R − �Rl − �Rκ, z − zκ) =
∑

κ

1

Ac

∫
surf ace

d2 �R va( �R, z − zκ)

(6)

where N is the number of unit cells of area Ac.
The eigenfunctions of U corresponding to outgoing (+) and incoming (−) wave boundary

conditions are denoted by χ(±)
r ; they are products of a vibrational wavefunction for the solid,

a plane wave for the particle motion parallel to the surface and a wavefunction χ(±)(krz, z) for
particle motion in the z direction, which obeys the equation(

h̄2

2m

∂2

∂z2
+

h̄2k2
rz

2m
− U

)
χ(±)

r (krz, z) = 0 r = i, f. (7)

Here the subscripts i (initial state) and f (final state) are collective indices for the wavevector
( �K, kz) of the particle and the number of phonons {n} in each vibrational mode of the crystal.
Equation (7) can have solutions for k2

rz < 0 corresponding to surface bound states.
The transition rate wf i from the initial state i to the final state f is given in terms of the

transition matrix Tf i by

wf i = 2π

h̄
|Tf i |2δ(Ei − Ef ) (8)

where Ef and Ei are the final and initial energies for the whole system.
Gell-Mann and Goldberger [32] have shown that the matrix elements Tf i are equivalent

to

Tf i = (φf |T |φi) = (φf , Uχ
(±)
i ) + tf i (9)

where φf and φi describe the final and initial wavefunctions of the unperturbed system and tf i

is given by

tf i = (χ
(−)
f , vχ

(+)
i ) +

∑
c

(χ
(−)
f , vχ

(−)
i )

tci

Ei − Ec

. (10)

The matrix element tf i contains all the information about the inelastic scattering through the
potential v.

The reflection coefficient R(kf , ki) is obtained by dividing the transition rate by the initial
particle flux ji = h̄kiz/mLz, summing over all phonon states and averaging over all initial
states

R(kf , ki) = 1

ji

∑
{nf }

∑
{ni }

ρ({ni})wf i (11)

where ρ({ni}) is the distribution of initial phonon states. For inelastic scattering the measured
quantity is the differential scattered intensity dR/dk3

f . This is obtained upon multiplying
the reflection coefficient defined in equation (11) by the available volume in the phase space
LzL

2
c/(2π)3 for the scattered particle. By using d3kf = k2

f dkf d�f and equation (1) we find

d2R

dEf d�f

= LzL
2
c

(2π)3

|kf |m
h̄2 R(kf , ki). (12)

The simplest approximation of equation (12) is the DWBA, obtained by replacing tf i by
vf i = (χ

(−)
f , vχ

(+)
i ). The reflection coefficient for particles scattered from the initial state ki

to the final state kf is then

R(kf , ki) = 2π

h̄ji

∑
{nf }

∑
{ni }

ρ({ni})|(χ(−)
f , Viχ

(+)
i )|2δ(Ef − Ei). (13)
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Only if a single phonon is exchanged are the conservation of energy (equation (3)) and of the
lateral momentum (equation (2)) uniquely satisfied. The one-phonon processes give rise to
sharp peaks in the reflection coefficients that are easily identified in the experimental spectra.

We need tf i to first order in the displacements �ulκ of the atoms of the crystal from their
equilibrium positions. In the harmonic approximation the displacement �ulκ of an atom of the
crystal can be expanded in normal modes as follows:

�ulκ =
(

h̄

NMκ

)1/2 ∑
�Q,j

(
1

2ω( �Q, j)

)1/2

�eκ( �Q, j)
[
a( �Q, j) + a†(− �Q, j)

]
ei �Q·( �Rl+ �Rκ)e−ih̄ω( �Q,j)

(14)

where a( �Q, j) and a†(− �Q, j) are the usual annihilation and creation operators, Mκ is the
mass of the κth lattice ion of the basis and �eκ( �Q, j) is the polarization vector of the j th normal
mode normalized such that∑

κ

�e∗
κ(

�Q, j)�eκ( �Q, j ′) = δjj ′ . (15)

We expand the surface–atom interaction potential Vi(�r, {�u}) to first order in the displacements
�ulκ as follows:

Vi(�r, {�u}) = Vi0(�r) +
∑
lκ

�ulκ · [∇lκVi(�r, {�u})]eq (16)

where Vi0(�r) = [Vi(�r, {�u})]eq is the potential at equilibrium and the gradient ∇lκ is performed
with respect to the atomic displacements �ulκ .

Recalling that we have assumed that Vi is the sum of two-body potentials that depend only
on the separation between the position �r of the He atom and the actual positions of the atoms
in the crystal we can write equation (16) in the form

Vi(�r, {�u}) = Vi0(�r) −
∑
lκ

�ulκ · �Flκ (17)

where �Flκ = −[∇lκva(�r − �rl − �rκ − �ulκ)]eq is the force exerted by the crystal atom lκ on the
He atom.

The thermal average of the transition rate results in

〈wf i〉 = 2π
∑
�Q,j

n[ω( �Q, j)]

2NMκω( �Q, j)
|Mf i |2δ(εf − εi − h̄ω( �Q, j)) (18)

where

Mf i =
∫

d3�r χ
(−)∗
f (�r)

[∑
lκ

�eκ( �Q, j)ei �Q· �Rl · �Flκ(�r)
]
χ

(+)
i (�r). (19)

With our convention on the sign of ω, δ(εf − εi − h̄ω( �Q, j)) automatically picks up the + sign
for absorption and the − sign for emission of one single phonon.

For the laterally averaged potential the wavefunctions have the form

χ
(+)
i (�r) = χi(kiz, z)

(L2
cLz)1/2

ei �Ki · �R

χ
(−)
f (�r) = χf (kf z, z)

(L2
cLz)1/2

ei �Kf · �R
(20)

where the wavefunctions are normalized in a box of base area L2
c and height Lz.
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We can now give an explicit expression for the matrix element Mf i (equation (19)) by
inserting the χ

(+)
i and χ

(−)
f defined in equation (20) and performing the in-plane integral and

the summation. We obtain

Mf i = (2π)2

L2
cLz

∑
�G,κ

∫
χ∗

f (kf z, z)�eκ( �Q, j) · �Fκ( �Q + �G, z)χi(kiz, z) dz δ( �Kf − �Ki − �Q − �G)

(21)

with

�Fκ( �Q + �G, z) = −
(

i( �Q + �G),
∂

∂z

)
va( �Q + �G, z − zκ)e

i( �Q+ �G)·�rκ (22)

and

va( �Q, z) = 1

Ac

∫
surf ace

e−i �Q· �Rva(�r) d2 �R. (23)

We also define

�Fκ(�ki, �kf ) =
∫

dz χ∗
f (kf z, z) �Fκ( �Q + �G, z)χi(kiz, z) (24)

to obtain

|Mf i |2 = (2π)2

L2
cL

2
z

∑
�G

∣∣∣∣
∑

κ

eκ( �Q, j) · �Fκ(�kf , �ki)

∣∣∣∣
2

δ( �Kf − �Ki − �Q − �G). (25)

From the transition rate equation (18) we obtain by using equation (12) the differential reflection
coefficient

d2R

dεf d�f

= m2|kf |
2Nh̄3kiz

∑
�Q, �G

∑
j

n[ω( �Q, j)]

ω( �Q, j)
δ(εf − εi − h̄ω( �Q, j))

× δ( �Kf − �Ki − �Q − �G)

∣∣∣∣
∑

κ

eκ( �Q, j)√
Mκ

· �Fκ(�kf , �ki)

∣∣∣∣
2

. (26)

The dominant contribution to equation (26) originates from the outermost top layer. The
differential reflection coefficient, considering only the scattering from the outermost layer
(κ = 0) and the �G = �0 term, takes the form

d2R

dεf d�f

= m2|kf |
2Nh̄3kiz

∑
�Q,j

n[ω( �Q, j)]

ω( �Q, j)
δ(εf − εi − h̄ω( �Q, j))δ( �Kf − �Ki − �Q)

×
∣∣∣∣e0( �Q, j)√

M0
·
∫

dz χ∗
f (kf z, z)

(
i �Q,

∂

∂z

)
va( �Q, z)χi(kiz, z)

∣∣∣∣
2

. (27)

4. The atom–surface potential

In the previous section we derived the one-phonon reflection coefficient in terms of the laterally
averaged static potential U(z) and of the force �Flκ between the He atom and the surface atom
located at �rlκ . For the two-body interactions the potential is well defined in the asymptotic
region (z → ∞) and near to the ions, where the closed-shell orbitals of the He atom overlap
the surface atom wavefunctions outside the crystal. In the intermediate region the potential is
not very well known.
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We are then forced to divide the interaction potential into a repulsive part (close to the
ions) and an attractive part due to the van der Waals forces [34]. The reduction of the attraction
of the van der Waals forces close to the surface is provided by semiempirical (SE) models [35].

It has been shown [36–41] that as a good approximation the repulsive part VR of the
potential can be written as

VR = αρ(�r). (28)

For metal surfaces the value of the constant α depends on the approach used. Esbjerg and
Norskov [41] were the first to obtain equation (28) for a He atom embedded in an homogeneous
electron gas with a positive uniform background. The value of α ranges from 305 to 329 eV
a3

B .
Hartree–Fock calculations [42] for the He interacting with a metal atom cluster give

α = 373 eV a3
B . Harris and Liebsch [43] by using perturbation theory and treating the He

atom outside the crystal as a perturbation of the surface electrons found α = 500 eV a3
B .

A similar value has been obtained by the recent more refined calculations of Takada and
Kohn [40].

In conclusion the values of α range from 250 to 500 eV a3
B . Since α is very large the

equipotential surfaces which are of interest for the He atom scattering (20–30 meV) corresponds
to very low electron densities. This means that in a collision with a metal surface the He atom
is reflected back very far from the surface. Typically the classical turning point or the closest
impact distance is about 3–4 Å from the surface atoms. At such large distance, the electronic
density is very well represented by superimposing the electron densities of the individual
atoms. With this superimposition VR is given by

VR(�r) = α
∑
lκ

ρκ(�r − �rlκ ) (29)

where the ρκ are the atomic charges. Calculations performed with atomic wavefunctions [42]
obtained with different degrees of approximation show that the corrugation profile around the
classical turning point can be very well approximated by an atomic charge of the type ρ̄e−β�r ,
where ρ̄ is a suitable constant and β ranges from 2 to 3 Å−1.

Around the classical turning point zt we can write

VR( �R, z) = αρ̄
∑
lκ

e−β[( �R− �Rl− �Rκ)2+(z−zκ )2]1/2
. (30)

This formula shows that the main contribution originates from the atoms of the first layer,
for which zκ = 0. We then consider only the surface layer. This dominant term can be
conveniently approximated, since zt 
 | �R − �Rl|, by

[( �R − �Rl)
2 + z2]1/2 � z

(
1 +

( �R − �Rl)
2

2z2

)
� z +

( �R − �Rl)
2

2zt

. (31)

The repulsive potential can then be written as

VR( �R, z) = αρ̄e−βz
∑

l

e
−β( �R− �Rl )

2

2zt . (32)

Equation (32) reproduces very well the corrugation obtained by sophisticated self-consistent
calculations. The laterally averaged potential corresponding to VR can be analytically
determined as URe−βz, where UR = (2πzt/β)αρ̄.

The attractive interaction arises from the interaction between the electrons of the closed
shells of the He atom and the electronic charge profile at the surface of the metal. If one
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considers a dipole–dipole interaction the attractive potential at large distances z from the
surface has the form

VA = −C3
1

z3
. (33)

The value of C3 is given by the Lifshitz [44] formula

C3 = h̄

4π

∫ ∞

0
dω

ε(iω) − 1

ε(iω) + 1
αHe(iω) (34)

where ε is the dielectric function of the metal surface and αHe is the He atom polarizability.
A simple way of determining equation (33) is to sum pairwise dipole–dipole

interactions [44]

−C6
1

|�r − �rlκ |6 (35)

where

C6 = 3h̄

π

∫ ∞

0
α(iω)αHe(iω) dω (36)

where α(iω) is the electronic polarizability of the metal atom. The sum of the terms in
equation (35) over an atomic plane of a Bravais lattice and over the equally spaced parallel
atomic planes gives

VA = π

6Acd
C6

1

(z − d/2)3
(37)

where d is the interplanar spacing.
In the limit of low electronic densities we have

C3 = π

6Acd
C6. (38)

Zaremba and Kohn [45–47] derived a similar expression based on the jellium model

VA = − C3

(z − zV dW )3
. (39)

They give zV dW for various metallic surfaces. A later paper by Harris and Liebsch [43]
suggested that the exact value of zV dW is much closer to the jellium edge z = d/2 than
Zaremba–Kohn values. Improvements in this formula have been obtained by considering the
quadrupole charge fluctuations of the He atom and of the surface electrons. These high-order
corrections give the following expression for the van der Waals interaction:

VA(z) = − C3

(z − zV dW )3
− C5

(z − zV dW )5
. (40)

The C5 term has been evaluated explicitly for a local dielectric function [48]. The results
presented so far neglect the surface periodicity. Hill et al [49] by considering the atom–atom
dipole interaction and summing over the lattice sites of a semi-infinite crystal obtained

VA(z) = − C3

(z − d/2)3
+ C ′ ∑

�G�=�0

(
G

2z

)2

ei �G· �RK2(Gz) (41)

where K2(Gz) is a modified Bessel function. C ′ is not well known but it can be fitted to
the asymptotic behaviour given by equation (39). This is a possible procedure to include the
corrugation in the van der Waals attraction.

The major correction that should be included in VA(z) is at small separation of the He
atom from the surface, where the van der Waals interaction diverges. The effect of the charge
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overlap is to reduce the attraction strongly at close range and to move the classical turning
point closer to the surface, where the variation of the charge density is greater. To eliminate or
reduce the effects arising from the unphysical divergence various methods have been proposed.
These methods are based on the fact that in the case of atom–atom scattering the van der Waals
interaction goes to zero at small separation. The reduction of the pairwise interaction between
atoms is well described by the Tang–Toennies [35] damping factor

VA(z) = −C6

z6
f6(z) (42)

where

fn(z) = 1 − e−βz
n∑

κ=1

(βz)κ

κ!
. (43)

The quantity β is the same parameter that describes the falling off of VR .
In conclusion, the atom–surface van der Waals interaction can be approximated by

VA(z) = − C3

(z − zV dW )3
f3(z − zV dW ). (44)

A similar damping factor has been obtained by Norlander and Harris [38] with a
pseudopotential (PP) approach. They show that when the cancellation of VR and VA is very
strong in the region close to the turning point, the presence of the smoothing factor is important
in order to obtain a dominant repulsive potential at small z. The f3 function that they found
has the form

f3(x) = 1 − [2x(1 + x) + 1]e−2x (45)

with x = K0(z − zV dW ) and K0 of the order of the inverse atomic radius. The value of K0 and
C3 determine the well depth.

The total potential is obtained by adding to the repulsive part VR one of the approximate
expressions for the attractive part that we have presented in this section. A typical laterally
averaged atom–surface potential is shown in figure 2 for the Ag case.

The construction of the potential is particularly simple if one assumes that the surface
charge density is given by a superposition of atomic charge densities. However, He
scattering experiments from metal surfaces show that this procedure gives rise to some
inconsistency [40, 50–52]. The main problem is that, if the pairwise interactions are adjusted
in such a way that the laterally averaged potential reproduces the He bound-state spectrum, the
surface corrugation, evaluated with the same potential, is substantially larger than that obtained
from the He diffraction patterns [50, 51].

He scattering data indicate that the surface electron density is intrinsically smoothed with
respect to the superposition of atomic densities. Recently in elastic scattering studies Rieder
and coworkers [53] have found unexpected differences in the corrugations measured with
He and Ne atoms. For Rh(110) and Ni(110) these authors conclude that the Ne diffraction
data reflect the corrugation of the unperturbed surface, whereas for He atoms they conclude
that the corrugation is shifted away from the atomic positions. In other words, with the He
scattering at fixed energy, the classical turning point is higher at the bridge position than
that for the on-top position. Rieder and Garcia [54] applied the Esbjerg–Norskov approach
to study their measurements for Rh(110) and they found that the corrugation is much larger
than the experimental one. Annett and Haydock [55] tried to reconcile this disagreement by
introducing an extra term into the interaction, called the anticorrugation term, which arises
from the hybridization of the He 1s occupied orbital and the empty states of the metal. This
hybridization term gives rise to an attractive contribution to the potential, which is stronger in
the top positions than in the bridge positions.
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Figure 2. He–Ag(111) laterally averaged potential.

A theoretical explanation based on the density functional approach for Rh(110) has been
given by Petersen et al [56]. For Rh(110) the electronic states which are more important at
the turning point distance have dxz character and cross the Fermi level at the zone boundary.
These orbitals change phase in passing from one atom to the next neighbour. At the short
bridge position their electron density is high. A He atom, in its 1s state, feels a repulsion from
those dxz states and is efficiently reflected. On the other hand the the 2px and 2py states of
Ne are antisymmetric, so they do not interact with the dxz band. For this reason the authors
conclude, in agreement with Rieder’s results, that for He at the energy used in the experiments
(20–50 meV) the He turning point above the on-top position is closer to the surface than that
above the short-bridge position. Recent calculations of Sun et al [57] show that also the He–Cu
interaction potential is anticorrugated.

To include mathematically in the He atom–surface interaction the effect of the
anticorrugation we write the total potential as a sum of pairwise potentials of the form

Vi(�r) =
∑

l,κ,�b �=0

va(�r − �rlκ − �ulκ − �b) (46)

where the crystal atoms are in the ideal atomic positions and the �b are the mid-positions of
the neighbouring atoms, i.e. the centres of the bridge positions. By using equation (46) the
dynamical interaction of equation (22) can be written as

�Fκ( �Q + �G, z) = −S( �Q + �G)

(
i( �Q + �G),

∂

∂z

)
va( �Q + �G, z − zκ)e

i( �Q+ �G)·�rκ (47)

where

S( �Q + �G) =
∑
�b �=0

ei( �Q+ �G)·�b. (48)

5. Lattice dynamics

The theoretical development of the surface lattice dynamics from first principles is very difficult
for metals, because of the screening of the ion–ion interaction by the conduction electrons in
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the presence of a free surface. In the case of the noble and transition metals, because of the
presence of the occupied d levels and the consequent sp–d electron hybridization, the difficulties
increase. The phonon calculations are then usually based on Born–von Karman empirical force
constant models [58–61], in which the force constants are obtained by least-squares fits of the
bulk properties such as the bulk phonon spectrum and the elastic constants. At the surface and
near the surface the force constants are treated as free parameters to reproduce the experimental
surface phonon dispersion relations [29, 62]. The most accurate empirical model include not
only force constants derived from pairwise interactions, but also force constants related to
three-ion interactions [63]. The three-ion interactions mimic the effects of the electron gas
screening and in the bulk are responsible for the violation of the Cauchy relations [64]. In the
SE models, instead of using a semi-infinite crystal it is convenient to use the slab method first
proposed by Allen et al [65]. In this way the surface is automatically included in the dynamical
problem. Among the systems studied using this approach we mention the low-Miller-index
surfaces of noble and transition metals such as Ag [62] and Pt [29] and of the simple metals
such as Al [66].

Recently it has been possible to carry out first-principles calculations of surface force
constants. The calculations have been performed for the simple sp metals Al and Na in the
framework of the PP theory. Beatrice and Calandra [67] carried out a calculation to second
order in the PP for the alkali metal surface phonons. The ground state and the response
properties of the electronic subsystem were calculated in the infinite-barrier model for the
electron wavefunctions.

An improvement of the theory has been given by Eguiluz et al [68] by evaluating self-
consistently the electron response function. The wavefunctions were obtained by the self-
consistent solution of the Kohn–Sham equations of density functional theory, by using the local
density approximation for exchange and correlation. The response function was evaluated by
treating the PP by second-order perturbation theory. A further improvement of this theory has
been presented by Quong et al [69] by treating the PP exactly. The effects of the three-ion
interactions are automatically included in this theory.

A different approach has been followed by Ho and Bohnen [70] by using the frozen-
phonon method. These authors evaluate a few interlayer and intralayer force constants at the
surface of Al(110) by creating the appropriate high-symmetry distortions of the outermost
layers. The distortion energy is obtained with a total-energy PP calculation in the density
functional theory. They calculate the phonon frequencies at high-symmetry points in the SBZ
and they use a force constant model to fit these frequencies in order to obtain the dispersion
relations in the whole SBZ.

A multipole expansion method has been used to study phonons in metals [71]. Following
this method Benedek et al have extended the electron pseudocharge multipole expansion
method [72] to construct an effective dynamical matrix for the surface vibrations of the Cu
surfaces [71, 73].

The molecular dynamics approach has been applied to the study of the temperature
dependence of phonons of model crystals [74], of W(001) [75], of Cu(110) [76], of Ni
surfaces [77], of Al, Ni and Cu surfaces [78] and of Ag(110), Cu(001) and Ag(111) [79].

6. Comparison of the He atom scattering experiments with theory

We first discuss the simple metal case, illustrating the atom–surface scattering features
of Al. For this system both SE and first-principles ab initio calculations of the phonon
spectrum are available [66]. It is then possible to make a direct quantitative comparison
between the two different approaches. In the SE model the crystal interatomic potential
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Figure 3. Bulk phonons of Al calculated along the symmetry directions of the Brillouin zone. The
crosses represent the neutron experimental data of [80].

contains central two-body interactions Vc and angular-dependent three-body interactions Va ,
parametrized by the tangential force constant αi = (1/r)(∂Vc/∂r)|r=ri

, the radial force
constant βi = (∂2Vc/∂r2) |r=ri

and the angular force constant δk = 1/3a2
0 (∂2Va/∂ cos θ2|θ=θk

,
where ri is the equilibrium distance from the atom at the origin of the ith shell of neighbours
and θk is the angle formed by a triplet of atoms.

The values of the bulk force constants, as mentioned before in section 5, are obtained by
a least-squares fit of the experimental bulk phonon spectrum and of the second-order elastic
constants [59]. The quality of this fit is depicted in figure 3, where the bulk phonon dispersion
relations calculated by taking into account a long-ranged up to ten nearest neighbours two-
body potential and a short-ranged up to two nearest neighbours angular potential are drawn,
compared with the experimental measurements with neutron scattering [80].

Similar results for bulk Al phonons are obtained with the ab initio PP theory of Eguiluz
et al [68]. The values of the force constant tensors calculated with this first-principles approach
are in quantitative agreement with those obtained in the SE model [64].

The surface phonon calculations for Al(111) are performed for a slab of 60 atomic planes
in the SE approach, while in the ab initio case the calculations are made for a semi-infinite
crystal [66]. In the SE model we obtain a very good agreement with the experimental measured
phonon dispersion curves by taking into account a small increase (up to 2%) of the interplanar
radial leading force constant, due to the surface relaxation of the outermost atomic plane.

In figure 4 we draw the calculated dispersion curves of the Rayleigh wave (RW) for two
high-symmetry directions of the two-dimensional Brillouin zone and for two non-symmetry
directions. The agreement with experimental He atom scattering data [21] is excellent for all
these directions.

A typical TOF spectrum, corresponding to the scan curve for Ei = 27.0 meV, θi = 40.2◦

and θf = 51.3◦ is plotted in figure 5 together with the reflection coefficients evaluated using
equations (26) and (47) with S(Q) = 1 in the SE model and in the PP model. This is
in agreement with recent calculations of Sun et al [57] showing that the He–Al interaction
potential is corrugated. The most prominent feature of the experimental histogram is the
Rayleigh peak at ωRW = −6 meV. Because of its shape the scan curve intersects the RW mode
twice in the TOF spectrum, yielding the second feature seen at ωRW = −14.6 meV. The RW
mode is well reproduced by both the SE and the PP models.
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Figure 4. Dispersion relation of the RW of Al(111) along the four directions of the two-dimensional
Brillouin zone shown in the inset. The squares are the He scattering experimental data of [21].

Figure 5. Comparison between experimental (histogram) and theoretical reflection coefficients of
Al(111) for the scattering geometry indicated in the text. (a) refers to the SE calculations, while
(b) refers to the PP ab initio calculations. R indicates the RW and 2 the LR [66].

In a similar way we have evaluated the reflection coefficients for several scattering
geometries of Al(001) and in the diagrams of figure 6 we report the calculated dispersion
of the maxima for the RW mode and for the other detectable peaks. The full curves correspond
to the evaluated maxima, obtained from equation (26), and the circles are the maxima of the
experimental TOF spectra [66]. The agreement between the two models is very good in the
lower part of the dispersion curves. The comparison with the experimental data in this region
is also extremely satisfactory. One notes a disagreement at higher phonon energies between
the PP calculations and the experimental data for the weak resonance denoted by 1. We do
not consider this to be a serious discrepancy if we recall that the ab initio PP calculations
are based on second-order perturbation theory. The inclusion of third-order terms in the PP
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Figure 6. Dispersion relation of the phonon modes of Al(001) along the 〈110〉 symmetry direction
of the two-dimensional Brillouin zone. Circles represent the He scattering experimental data [66].

Figure 7. Dispersion relation of the phonon modes of Cu(111) with Q along the 〈112〉 direction
of the two-dimensional Brillouin zone. Circles refer to HAS measurements [25]. Squares refer to
EELS data [58].

in the evaluation of the total energy would probably be sufficient to eliminate these small
discrepancies.

To discuss the noble and transition metal case, we illustrate now the Cu and Rh atom–
surface scattering features. As mentioned before in section 4 for these metals the He–surface
interaction potential is anticorrugated. First we show the results of the SE calculations for
the Cu(111) surface [81]. To account for the charge redistribution occurring in the surface
region we adjust the leading force constants by a trial-and-error procedure, starting with a
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Figure 8. Reflection coefficient of Cu(111) with scattering geometry discussed in the text. The
continuous curve is the full calculation, while the dashed curve is with S(Q) = 1.

Figure 9. Comparison between measured TOF spectra [25] and calculated reflection coefficients for
several scattering geometries for Ei = 35.16 meV: (a) θi = 33.5◦, (b) θi = 33.0◦, (c) θi = 32.5◦
and (d) θi = 30.0◦. The total scattering angle is θsd = 90.5◦.

variation of the first-neighbour force constants. With this procedure we found that the in-plane
tangential force constant α

‖
1 is increased by 10%, giving rise to a surface stress, the in-plane

radial β‖
1 force constant is softened by about 16% and the interplanar radial force constant β⊥

1 is
stiffened by about 20%, while the angular force constant δ1 is increased by 20%. These modest
variations of the interactions are consistent with the PP calculations of Bohnen et al [83] for
the Cu(111) surface. Figure 7 shows the calculated dispersion curves in the �̄M̄ direction.
The full curves indicate the Rayleigh branch, the longitudinal resonance (LR) and the gap
mode (G). The dashed curves correspond to the edges of the projected bulk bands. Circles
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Figure 10. Dispersion relation of the phonon modes of Cu(001) with Q along the 〈110〉 direction.
Squares and triangles refer to the experimental HAS data [30] and EELS data [84]. Two typical
scan curves are also drawn for Ei = 39.9 meV: (a) θi = 40.0◦ and (b) θi = 34.5◦.

Figure 11. Dispersion relation of the phonon modes of Cu(001) with Q along the 〈100〉 direction.
Squares and triangles refer to the experimental HAS data [30]. The scan curves drawn in the figure
refer to the TOF spectra of figure 12.

represent the He scattering data [25], while the squares refer to the EELS measurements [58].
In figure 8 is shown the reflection coefficient evaluated with equation (26) in the 〈112̄〉 direction
with and without the structure factor of equation (48) for Ei = 35.16 meV, θi = 33.5◦ and
θf = 66.5◦. The dashed curve refers to S(Q) = 1. One notices that at large negative energy
transfer the two spectra coincide. This region corresponds to bulk projected on the surface
with small momentum transfer along the scan curve (depicted in figure 7). One notes a strong
reduction of the LR intensity and an even stronger reduction of the RW intensity in the region
of large momentum transfer. The structure factor, which is a function rapidly decreasing with
increasing momentum, has the effect of reducing in a dramatic way the height of the RW peak
with respect to the height of the LR, in agreement with the experimental findings. In figure 9 are
drawn several spectra as a function of θi (see the caption of figure 9 for details). By decreasing
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Figure 12. Comparison between TOF spectra [30] (histogram) and evaluated reflection coefficients
for Cu(001) with Q along the 〈100〉 direction for several scattering geometries at Ei = 34.4 meV:
(a) θi = 40.0◦, (b) θi = 38.0◦, (c) θi = 36.0◦ and (d) θi = 34.0◦.

θi the momentum transfer of the RW is rapidly increasing and the structure factor is rapidly
decaying on this mode. Furthermore the structure factor does not affect the bulk projected
continuum around −20 meV, because these projected phonons have small lateral momentum.
As one can see the anticorrugation effect not only gives the reason for the overtaking of the
intensity of the LR with respect to the Rayleigh mode, but also explains in terms of bulk
projected phonons the large structure observed in the spectra located around −20 meV. For the
geometry θi = 30◦ where QRW = 1.45 Å−1 and QLR = 0.88 Å−1 the decay of the structure
factor is so strong that only the LR is observed in agreement with the experiments.

The non-close-packed (001) surface of Cu is even more interesting [81] than the (111)
surface. For this surface there has been found experimentally [30] a giant LR which is strongly
anisotropic with its maximum intensity along the 〈100〉 direction. The surface lattice model
is constructed as for the (111) surface. In this case we obtain modest variation of the surface
force constants: a surface tensile stress of 10%, a reduction of 12% for β

‖
1 and an increase

of 20% of the interplanar β⊥
1 . The last value agrees with the theoretical calculations of Chen

et al [84]. The evaluated surface phonon frequencies together with the atom scattering [30]
and EELS data [84] are reported in figure 10 for a Q along the 〈011〉 direction and in figure 11
for Q along the 〈001〉 direction. The full curves are the evaluated Rayleigh and longitudinal
LR branches. Dashed curves are the edges of the bulk projected phonons. In the calculated
reflection coefficients shown in figure 12 one sees clearly that decreasing θi , i.e. increasing the
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Figure 13. Comparison between TOF spectra [30] (histogram) and evaluated reflection coefficients
for Cu(001) with Q along the 〈110〉 direction for two scattering geometries at Ei = 39.9 meV:
(a) θi = 40.0◦ and (b) θi = 34.5◦.

Figure 14. Surface phonon frequencies of Rh(111) with Q along the 〈112〉 surface symmetry
direction. The dashed curves correspond to bulk projected phonons, while the full curves refer to
the surface phonon modes. Dots and squares are the HAS data from [31]. Curves (a) and (b) are
the scan curves for θi = 40.5◦ and θi = 34.0◦ respectively.

lateral momentum, the LR overtakes the RW mode and resembles a huge resonance. Note that
in the region (−20, −10) meV the contribution of the projected bulk phonon in our reflection
coefficients reproduces quite well the behaviour of the spectra. The calculated spectra along
the 〈011〉 direction are presented in figure 13. One sees that the height of the RW mode is
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Figure 15. Comparison between measured TOF spectra [31] and the evaluated reflection
coefficients of Rh(111) for several scattering geometries indicated in the figure.

clearly higher than that of the LR. This is due to the structure factor, that in this direction does
not decay rapidly enough to reduce the RW mode intensity.

To evaluate the surface phonons of Rh(111) we have chosen [82] an SE interatomic
potential in which the bulk interactions are central long ranged up to ten nearest neighbours
and non-central up to two nearest neighbours, with modifications of the leading surface
force constants by about 20% with respect to their bulk values, in agreement with ab initio
calculations [85].

In figure 14 are drawn the dispersion relations of the RW, the LR and the gap mode for Q

along the �M direction of the 2DBZ, along with two typical scan curves of the He scattering
experiments. Circles and squares refer to the measurements of [31]. The dashed curves
represent the edge of bulk phonons projected onto the surface. As one can see the agreement
between theory and experiments is excellent.

In figure 15 are drawn the experimental [31] (histogram) and theoretical (full curve) TOF
spectra calculated with equation (26) by taking into account the anticorrugating function of
equation (48), for four different scattering geometries (see the caption for details). As one
can see, the ratio of scattering intensity of the RW with respect to that of the LR decreases
on increasing the energy and momentum transfer, in agreement with the experiments. In the
spectrum taken at θi = 34◦, relative to the scan curve (b) of figure 14, the LR intensity overtakes
that of the RW, while the structure observed between ω = −30 and −25 meV is relative to
scattering from bulk phonons. In conclusion, the anticorrugating effect fully explains the
anomalous height of the LR observed by He scattering. As Q increases, the structure factor
decreases the height of the RW peak, and at large momentum the LR intensity overtakes the
RW intensity.
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